International Journal of Synergy in Engineering and Technology 2 (2021) 29-38

Iinitielsin ati onal JMM@

\) Syner |n Engineering andiTechnolo
Y, 9% g g “ 10109}y,

Development of SDN Controller Testbed Using Rasberry Pi 4
Nur Fatin Amirah binti Mohd Rodzi, Lukmanulhakim bin Ngah*

Faculty of Computer, Media and Technology Management, University College TATI, MALAYSIA

*Corresponding author: hakim@uctati.edu.my

KEYWORDS ABSTRACT

Software Defined Network Nowadays, people are living in a ‘internet of things’ world.
Controller Everything can be programmed over network and no longer
Testbed depended on hardware and human interaction to transfer
Raspberry Pi 4 data. Software Defined Network (SDN) is one of the creations

of this new kind of world which programmed efficient network
configuration that improve network performance and
monitoring, which will lessen the hassle of configuring devices.
By focusing to SDN, this project will study the performance of
SDN by Controller Testbed using Raspberry Pi done to
measure the network performance efficiency by the parameter
of TCP and UDP throughput. The main purpose of this research
project is to Develop SDN Controller testbed using Raspberry
Pi 4 by using TCP and UDP throughput as the main metric
measurement. The hardware used is Raspberry Pi 4 and
Raspberry Pi 3, and the tools used is called JPERF will be used
to measure the throughput of TCP and UDP. The result from
this test conclude that Raspberry Pi 4 are suitable and
compatible hardware to conduct SDN network. From the
result, we may know what the difference of network
performances of SDN in Raspberry Pi 4, which resulting that
Raspberry Pi 4 is more compatible than Raspberry Pi 3. This
project also prove that Raspberry Pi 4 can support SDN
network.

1.0 Introduction

Ensuring uninterrupted Internet services and providing high Quality-of-Services (QoS) is
becoming burgeoning demand in fulfilling industry-specific regulations. This alternative is
towards improving future Internet and service mobility to enhance overall user experience. As
such, networking protocols have evolved significantly over the last few decades. However,
traditional network configuration is time-consuming and error-prone due to manual
configuration by network administrator. The traditional network architecture that integrates the
forward plane and control plane into the same device cannot support these requirements [1].

The problem statement of this research is there is no project of SDN POX Controller by using
Raspberry Pi 4 and Raspberry Pi B+ have an issue with not fit for using Open vSwitch and POX

Received 30 November 2021; received in revised form 17 December 2021; accepted 24 December 2021.

© 2020 University College TATI (UC TATI). All rights reserved.

mailto:hakim@uctati.edu.my

International Journal of Synergy in Engineering and Technology 2 (2021) 29-38

Controller [2]. The objectives of this research are to develop SDN controller testbed using
Raspberry Pi 4. Next is to test network throughput TCP & UDP protocol. The third objective is to
Compare CPU Load between Raspberry Pi 4 and Raspberry Pi 3 of their utilization on SDN

To solve this problem, the new network architecture method called Software Defined Network
proposed. SDN is a new networking paradigm that separates the control and forwarding planes
in a network. The network can be dynamically managed depending on networking policies [3].
SDN helps to detach control plane from data plane, which helps the administrator to manage the
network centrally and can utilize bandwidth at its maximum, resulting in great flexibility.

2.0 Literature Review

Software-Defined Networking is a form of OpenFlow-enabled networks that utilize the
OpenFlow protocols and an external Application Program Interface (API) to control the decision
functionality of the network [4]. SDN is one of the major programmable networks gaining fast
popularity among network administrators due to its simplicity and efficiency. Although
traditional networks have been efficient over the years, the major difference between the
traditional network architecture and SDN architecture is the SDN controller component. The SDN
controller is a controlling element that controls underlying network devices via a well-developed
programmable coding scheme [5].

OpenFlow is just an option for a control protocol in SDN, but it is the predominant one. As
OpenFlow currently evolves, several versions of its specification exist; newer releases are more
powerful, as their feature sets support IPv6, Multiprotocol Label Switching (MPLS), rerouting,
metering, policing and more scalable control. However, most existing applications are based on
version 1.0, whose feature set is rather limited [6].

The controller connected to every networking device (switches and routers) via a separate
control network thus allowing it to control and monitor each device [7]. This means that once a
packet sent from a node towards a destination interface, the switches and routers access the
centralized control logic (SDN controller) for a decision on how packets forwarded and what
route to take. Since the control function of the network resides within the SDN controller, it is
necessary to make the controller resilient and full-tolerance. To achieve this, a tightly coupled
cluster of SDN controllers used to control and manage the network devices [8]. This is especially
needed in large environments such as enterprise networks and cloud computing. POX is an open-
source controller for developing SDN applications.

POX controller provides an efficient way to implement the OpenFlow protocol which is the de
facto communication protocol between the controllers and the switches. Using POX controller,
you can run different applications like hub, switch, load balancer, and firewall. Tcpdump packet
capture tool can be used to capture and see the packets flowing between POX controller and
OpenFlow devices [9].

This paper puts together all elements to build a low-cost micro software defined data centre
by leveraging off-the-shelf hardware and open-source software. We propose a system
architecture for constructing a testbed/micro data centre for researching SDN enabled cloud
computing. We focus on the cost-effectiveness of our setup by reusing existing equipment and
coping with the budget and space limitations of an academic research laboratory. One of the most
important benefits of SDN is that commodity hardware can be used to build networking devices.
Therefore, we use Raspberry Pi, low-cost and small single-board computers, to create a small-
scale data centre network [10]. To make a switch out of Raspberry Pi, we integrate each Pi with
an Open vSwitch (OVS), which is one of the most widely used virtual switches in SDN and use POX
controller as controller in this system.

Raspberry Pi is the name of a series of single-board computers made by the Raspberry Pi
Foundation, a UK charity that aims to educate people in computing and create easier access to
computing education. All over the world, people use Raspberry Pi to learn programming skills,
build hardware projects, do home automation, and even use them in industrial applications. The

30

International Journal of Synergy in Engineering and Technology 2 (2021) 29-38

Raspberry Pi is a very cheap computer that runs Linux, but it also provides a set of GPIO (general
purpose input/output) pins that allow you to control electronic components for physical
computing and explore the Internet of Things (IoT) [11].

Raspberry Pi 4 Model B is the latest product in the popular Raspberry Pi range of computers.
It offers ground-breaking increases in processor speed, multimedia performance, memory, and
connectivity compared to the prior generation Raspberry Pi 3 Model B+, while retaining
backwards compatibility and similar power consumption. For the end user, Raspberry Pi 4 Model
B provides desktop performance comparable to entry-level x86 PC systems [12].

This product’s key features include a high-performance 64-bit quad-core processor, dual-
display support at resolutions up to 4K via a pair of micro-HDMI ports, hardware video decodes
at up to 4Kp60, up to 8GB of RAM, dual-band 2.4/5.0 GHz wireless LAN, Bluetooth 5.0, Gigabit
Ethernet, USB 3.0, and PoE capability (via a separate PoE HAT add-on). The dual-band wireless
LAN and Bluetooth have modular compliance certification, allowing the board to be designed into
end products with significantly reduced compliance testing, improving both cost and time to
market [12].

3.0 Methodology

This project only uses Raspberry Pi 4, which is the latest technology of Raspberry Pi. This
project concentrates on the network flow where it tests the network throughput TCP & UDP
protocol and compare CPU Load of the network in SDN when using Raspberry Pi 4. This project
established to develop SDN successfully by testing and proving that Raspberry Pi 4 could support
SDN than other older Raspberry Pi technology. Therefore, the decision to use Raspberry Pi 4 is
actually to enhance SDN network and proving that Raspberry Pi 4 is more enhance than
Raspberry Pi B+ in supporting SDN.

SDN controllers’ direct traffic according to forwarding policies that a network operator puts in
place, thereby minimizing manual configurations for individual network devices. By taking the
control plane off the network hardware and running it instead as software, the centralized
controller facilitates automated network management and makes it easier to integrate and
administer business applications. In effect, the SDN controller serves as a sort of operating system
(0S) for the network. The hardware and software used were Raspberry Pi 4, Raspberry Pi 3,
Raspberry Pi OS, Open vSwitch, POX controller and Iperf.

The test setup for the OpenFlow enabled Raspberry Pi that act as controller of POX controller
which consists of a PC and Raspberry Pi 4. The goal of this test is to determine if the Raspberry Pi
offers enough performance to run the installed Open vSwitch. To test the throughput, the JPERF
command is run between the two hosts for 30 seconds to allow for flow rules to be placed by the
controller without influencing the average values too much. The results will be taken by observing
the transmission speeds of TCP and UDP. At the same time the CPU load will be compared. In the
fourth stage, the devices will be setup for the testbed testing to make sure the capability and the
functional of the device are working properly. In this stage, the proposed design will be
implemented to test the device with the public environment in order to see how the device can
work properly as requested. The setup of the device will be tested on SDN network using
Raspberry Pi 4 as controller. From this setup, the network performance will be measured on
parameters of TCP & UDP throughput. The outcome of this process is the result obtained.

4.0 Result

The expected result for this research project is to show the comparison of the result, in terms
of the networking performances of Raspberry Pi 4 and Raspberry Pi 3. Testing procedure will be
divided into two part which is network throughput TCP & UDP protocol, and compare CPU Load
between Raspberry Pi 4 and Raspberry Pi 3. The metrics for TCP is bandwidth and for UDP are
bandwidth and jitter. The test will be conducted first using Windows 10 and then Ubuntu 14.04.4.
For the testing, the method that have been used is transferring 100MB, 200MB and 300MB of TCP

31

International Journal of Synergy in Engineering and Technology 2 (2021) 29-38

testing for bandwidth utilization, and transferring 25MB, 50MB and 100MB of UDP testing for
bandwidth utilization.

4.1 Transmission Control Protocol (TCP) on Raspberry Pi 4

a) Server
The metrics used for TCP is bandwidth utilization. For the figure below, the first experiment
of server side shows that the average bandwidth for 100MB is 621.00 Mbytes/s.

Fri, 11 Dec 2020 07:41:1

Bandwidth & Jitter

o 45 50 55 &
Time (sec}

Figure 1: Bandwidth reading of 100mb bandwidth utilization

The metrics used for TCP is bandwidth utilization. For the figure below, the first experiment
of server side shows that the average bandwidth for 200MB is 731.00 Mbytes/s.

Fri, 11 Dec 2020 07:43%4

Bandwidth & Jitter

Figure 2: Bandwidth reading of 200mb bandwidth utilization

The metrics used for TCP is bandwidth utilization. For the figure below, the first experiment
of server side shows that the average bandwidth for 300MB is 670.00 Mbytes/s.

32

International Journal of Synergy in Engineering and Technology 2 (2021) 29-38

Fri, 11 Dec 2020 07:46:4.

Bandwidth & Jitter

Figue 3: Bandwidth reading of 300mb bandwidth utilization

b) Client
The metrics used for TCP is bandwidth utilization. For the figure below, the first experiment
of server side shows that the average bandwidth for 100MB is 623.00 Mbytes/s.

Fri, 11 Dec 2020 07:41:25

Bandwidth

Figure 4: Bandwidth reading of 100mb bandwidth utilization

The metrics used for TCP is bandwidth utilization. For the figure below, the first experiment
of server side shows that the average bandwidth for 200MB is 735.00 Mbytes/s.

Fri, 11 Dec 2020 07:44:0.

Bandwidth

Figure 5: Bandwidth reading of 200mb bandwidth utilization

33

International Journal of Synergy in Engineering and Technology 2 (2021) 29-38

The metrics used for TCP is bandwidth utilization. For the figure below, the first experiment
of server side shows that the average bandwidth for 300MB is 675.00 Mbytes/s.

Fri, 11 Dec 2020 07:47:1

Bandwidth

F

MBy

igure 6: Bandwidth reading of 300mb bandwidth utilization

4.2 User Datagram Protocol (UDP) on Raspberry Pi 4

a) Server

The metrics used for UDP is bandwidth utilization and jitter for server side. For the figure
below, the first experiment of server side shows that the average bandwidth utilization for
25 MBytes is 3.12 MBytes/s and the average jitter is 0.01ms.

Fri, 11 Dec 2020 08;11: 3§

Bandwidth & Jitter

The metrics used for UDP is bandwidth utilization and jitter for server side. For the figure
below, the first experiment of server side shows that the average bandwidth utilization for
50 MBytes is 6.25 MBytes/s.

34

International Journal of Synergy in Engineering and Technology 2 (2021) 29-38

Fri, 11 Dec 2020 08:09:54

Bandwidth & Jitter

The metrics used for UDP is bandwidth utilization and jitter for server side. For the figure

below, the first experiment of server side shows that the average bandwidth utilization for
100 MBytes is 12.50 MBytes/s.

Fri, 11 Dec 2020 07:55:56
Bandwidth & Jitter

- - - - - 4

Figure 9: Bandwidth reading of 100mb bandwidth utilization

b) Client

The metrics used for UDP is bandwidth utilization for client. For the figure below, the first

experiment of client side shows that the average bandwidth utilization for 25 MBytes is
3.12 MBytes.

35

International Journal of Synergy in Engineering and Technology 2 (2021) 29-38

Fri, 11 Dec 2020 08:12:13

Bandwidth

Figure 10: Bandwidth reading of 25mb bandwidth utilization

The metrics used for UDP is bandwidth utilization for client. For the figure below, the first
experiment of client side shows that the average bandwidth utilization for 50 MBytes is
6.25 MBytes.

Fri, 11 Dec 2020 08: 10: 07
Bandwidth

iur 11: Bandwidth reading of 50mb bandwidth utilization

The metrics used for UDP is bandwidth utilization for client. For the figure below, the first
experiment of client side shows that the average bandwidth utilization for 100 MBytes is
12.50 MBytes.

Fri, 11 Dec 2020 07:56:36

Bandwidth

s]

Figure 12: Bandwidth reading of 100mb bandwidth utilization

36

International Journal of Synergy in Engineering and Technology 2 (2021) 29-38

4.3 Comparison of CPU load between Raspberry Pi 4 and Raspberry Pi 3

CPU load was measure by CPU load average which is the number of processes which are being
executed by CPU or waiting to be executed by CPU. For Raspberry Pi 4, the load average over the
last 1 minute is 0.18, load average over the last 5 minutes is 0.59 and the load average over the
last 15 minutes is 0.74.

180, 547 * 1 runnir
1 & e 0,18 0,59
2 01:17:52

Figure 13: CPU load of Raspberry Pi 4

CPU load was measure by CPU load average which is the number of processes which are being
executed by CPU or waiting to be executed by CPU. For Raspberry Pi 3, the load average over the
last 1 minute is 2.45, load average over the last 5 minutes is 3.02 and the load average over the
last 15 minutes is 2.79.

Creinnd 13.62] : thr:
Creinnd 15.6%] : 2,45
LIl 2.6%] :
L 2.0z
L

[111182 Hl
1 210M/2,086]

ubs 128 72M 11776 R 17.1 20.2 4:13,16 Jusr/bin/baloo_fi
3578 root 20 0 140 176 744 B 3,9 0.2 0:10,52 htop
2400 root 20 (o] 272 892 S 2.6 4.7 1:28.59 Zusr/lib/xorg/¥or
2524 uinmtu 20 0 448 S 2.0 13,3 2:22.93 Zusr/bin/plasmash
2520 uamtu 20 0 920 100 S 2,0 2.7 0:15.91 Zusr/bin/kwin_x11
3416 ulamtu 20 0 552 620 S 2.0 4.9 0:03.95 /usr/bin/spectacl
2526 root 33 19 104 996 S 1.3 0.8 0:26.47 Zusr/bin/baloo_fi
2531 ulamtu 20 0 2920 100 S 0.7 2.7 0:03.68 Jusr/binkwin_x11
271 7antu 2033 189 104 996 R 0.7 0.8 0:09.65 Zusr/bin/baloo_f3
398 wbemtu 20 O 784 168 S 0.7 1.2 0:06,03 tags.so [kdeinit5
2484 ubxmtu 0 0 1 304 464 S 0.7 1.9 0:13.74 kdedS
2544 ulnntu 33 18 448 S 0.7 13.3 0:04.53 /usr/bin/plasmas}
2539 ubantu 33 18 104 996 S 0.7 0.8 0:02.61 isr/bin/bals fi
842 root 20 0 83616 6304 5804 S 0.7 0.7 0:00,51 /usr/bin/gmenudbu

F1HEIpF 2SetuplF SSeanchr 4 Filterr STreeF cSoF 7NieEl=r cNicel r SR 100GiE
Figure 14: CPU load of Raspberry Pi 3

Table 1 shows CPU load average of Raspberry Pi 4 and Raspberry Pi 3. The CPU load average
over the last 1 minute for Raspberry Pi 4 is 0.18 while Raspberry Pi 3 is 2.45. This means that,
CPU of Raspberry Pi 4 was idle by 382% on average; no processes were waiting for CPU time

37

International Journal of Synergy in Engineering and Technology 2 (2021) 29-38

(0.18) while CPU of Raspberry Pi 3 was idle by 155% on average; no processes were waiting for
CPU time (2.45). The CPU load average over the last 5 minutes for Raspberry Pi 4 is 0.59 while
Raspberry Pi 3 is 3.02. This means that, CPU of Raspberry Pi 4 was idle by 341% on average; no
processes were waiting for CPU time (0.59) while CPU of Raspberry Pi 3 was idle by 98% on
average; no processes were waiting for CPU time (3.02). The CPU load average over the last 15
minutes for Raspberry Pi 4 is 0.74 while Raspberry Pi 3 is 2.79. This means that, CPU of Raspberry
Pi 4 was idle by 341% on average; no processes were waiting for CPU time (0.74) while CPU of
Raspberry Pi 3 was idle by 121% on average; no processes were waiting for CPU time (2.79).

Table 1: CPU load usage of Raspberry Pi 4 and Raspberry Pi 3

Time before execution (minute)
CPU load average 1 B 15
Raspberry Pi 4 0.18 0.59 0.74
Raspberry Pi 3 2.45 3.02 2.79

5.0 Conclusion

From the result, we can conclude that SDN are more compatible with Raspberry Pi 4 where it
doesn’t burden CPU where it has less load average when SDN was active while on Raspberry Pi 3,
has higher value of load average which can lead to overload if it run much longer where this can
cause users to be waiting for their programs to run on the CPU, and experiencing degraded
performance which means that it’s still compatible but less compatible than Raspberry Pi 4.

References

[1] M. A. I. M. Sakari, N. Yaakob, A. Amir, R. B. Ahmad, M. N. M. Warip, and Z. Ibrahim,
“Performance analysis of Software Defined Network (SDN) in link failure scenario,” IOP Conf.
Ser. Mater. Sci. Eng,, vol. 557, no. 1, pp. 6-11, 2019, doi: 10.1088/1757-899X/557/1/012028.

[2] F.Siebertz and P. K. Jonas, “Masterprojekt Software Defined Networking,” 2014.

[3] R.Intan, C.H. Chi, H. N. Palit, and L. W. Santoso, “Preface,” Commun. Comput. Inf. Sci., vol. 516,
pp- 395-403, 2015, doi: 10.1007/978-3-662-46742-8.

[4] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and OpenFlow: From
concept to implementation,” IEEE Commun. Surv. Tutorials, vol. 16, no. 4, pp. 2181-2206,
2014, doi: 10.1109/COMST.2014.2326417

[5] W. Unger, “Evaluating security of SDN controllers,” no. April, 2016.

[6] W. Braun and M. Menth, “Software-Defined Networking Using OpenFlow: Protocols,
Applications and Architectural Design Choices,” Futur. Internet, vol. 6, no. 2, pp. 302-336,
2014, doi: 10.3390/fi6020302.

[7] A.S. Dawood and M. N. Abdullah, “A Survey and Comparative Study on Software-Defined
Networking,” Int. Res. J. Comput. Sci., vol. 3, no. no.8, pp. 1-10, 2016.

[8] B.A.A.Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and T. Turletti, “A survey of software-
defined networking: Past, present, and future of programmable networks,” IEEE Commun.
Surv. Tutorials, vol. 16, no. 3, pp. 1617-1634, 2014, doi: 10.1109/SURV.2014.012214.00180

[9] M.Fernandez, “Evaluating OpenFlow Controller Paradigms,” ICN 2013, Twelfth Int. Conf. pp.
151-157

[10] A. Nadjaran Toosj, J. Son, and R. Buyya, “CLOUDS-Pi: A Low-Cost Raspberry-Pi based Micro
Data Center for Software-Defined Cloud Computing,” IEEE Cloud Comput., vol. 5, no. 5, pp.
81-91, 2018, doi: 10.1109/MCC.2018.053711669.

[11] “What is a Raspberry Pi?” https://opensource.com/resources/raspberry-pi (accessed Jul.
30, 2020).

[12] “RP14-MODBP-8GB.” https://my.element14.com/raspberry-pi/rpi4-modbp-8gb/raspberry-
pi-4-model-b-cortex/dp/3369503 (accessed Jul. 30, 2020).

38

https://opensource.com/resources/raspberry-pi
https://my.element14.com/raspberry-pi/rpi4-modbp-8gb/raspberry-pi-4-model-b-cortex/dp/3369503
https://my.element14.com/raspberry-pi/rpi4-modbp-8gb/raspberry-pi-4-model-b-cortex/dp/3369503

